Infrared Atmosphéric Sounding Interferometer

CENTRE NATIONAL D'ETUDES SPATIALES

GEOPHYSICAL VARIABLES	ACCURACY	VERTICAL RESOLUTION	HORIZONTAL SAMPLING
Temperature profile	1K (cloudfree)	1 km	25 km (cloudfree)
Humidity profile	10%(cloudfree)	1-2 km troposphere (cloudfree)	25 km (cloudfree)
Ozone total amount	5%(cloudfree)	N/A	25 km (cloudfree)
Ozone vertical distribution	10%(cloudfree)	2 or 3 pieces of independant information	25 km
Fractional cloud cover	10%		
Cloud top temperature Cloud emissivity	2K		
CO, CH ₄ , N ₂ O column	10%	N/A	100 km
SO ₂ , CFCs	10%-20%		
Sea surface temperature	<0.5K (cloudfree)	2 (×	25 km
Land surface temperature	1K (cloudfree)		25 km
Land surface emissivity	1%		25 km
FUMETSAT			C

es

G

Spectral Range

(🚔 EUMETSAT

These products can be derived from high spectral resolution infrared sounder

Spectral : resolution (1/2)

- Spectral resolution (FWHM)
 - The spectral resolution specification is based on the line spacing in the 650 cm⁻¹ CO₂ absorption band
 - This spacing is about 1.5 cm⁻¹
- Spectral sampling interval = 0.25 cm⁻¹

Configuration

Performances Tests

PFM Optical vacuum test : Oct 2003

PFM test on-board Metop: Feb 2004

FM2 optical vacuum test : Sept. 2004

Courtesy EADS

FM3 optical vacuum test : Oct. 2005

Courtesy Alcatel

Metop

System radiometric noise for FM2 :

•Raw inteferograms processed with DPS

•Average of 4 pixel *27scan angle*40 lines

•Noise for each line and averaged on 40 lines

After cold box design modifications, ice contamination issue solved

Radiometric calibration

- Interpixel & interscan calibration
- Scan mirror characterization verified
 - External HBB temperature : 85 K
- Impact of the incidence on calibration error
 - Measured for external HBB in SP= 1, 5, 10, 25 positions
 - Incidence : -56.67, -50, -41.67, -16.67 deg
 - External HBB temperature : 294 K & 240 K
- Precautions
 - Measurement repeated twice in order to detect potential thermal drift in the test setup
 - Effect of Earth Panel temperature verified

- Objectives of the Mission Specification on radiometric calibration are expected to be achieved
- Absolute Calibration error
 - <<u>0.5 K</u>
- Intercalibration errors at a given time for all geophysical conditions
 - < 0.2 K
 - 4 pixels, all scan directions, all channels
- Intercalibration errors over time
 - <<u>0.3 K</u>
 - Random variations (over orbit period)
 - Long term variations

EUMETSA

Instrument

Non-Linearity correction efficiency

- Measurements performed with • CBS temperature = 98,3 K
 - No NL correction : error = 1 K (B1)
 - NL correction : degree 2 polynom (B1)
 - Computed from interf at 98,2 K \rightarrow error < 0.2 K
 - Computed from interfs at 93,5 K • \rightarrow error < 0.4 K

Session SM 06 22h59 - T HBB about 299 K, no Non-Linearity correction

Session SM 06 22h59 - T HBB about 299 K. CBS 98.3 K Non-Linearity correction calculated on session sm0306150454 (CBS 94 K)

Pixel 2 Pixel 4 Pixel 1 Pixel 3

300.0 299, 299.0 299, ¥ 299,3 299.0 298,8 298 298.4 298 64 1245 1445 1645 2245 2045 Wave number (cm-1) Pixel 1 Pixel 2 - Pixel 3 -Pixel 4

QUIT

Session SM 06 22h59 - T HBB about 299 K, CBS 98,3 K Non-Linearity correction calculated on same session

Spectral measurements during FM2 tests

- An integrating sphere is put in front of the instrument with 2 laser beams injected simultaneously in it for direct measurement of the Instrument Spectral Response Function (ISRF)
 - In B1 band : laser CO2 (10.59 μm)
 - In B3 band : laser HFDF (3.76 μm)
 - Laser beams are periodically occulted by a shutter for measurement of the sphere background emission
 - Gives also a direct measurement of the Cube Corner trajectory
- Results are computed from raw interferograms processing
- Test performed with instrument either in
 - External Calibration mode
 - Allows to acquire a lot of data
 - Scan motion is limited to beta compensation law (biggest part of the dynamic disturbance)
 - Normal Operation mode
 - Nominal operation mode
 - But lower amount of data available
- Sounder IPSF measured with a dedicated OGSE (Geometric Collimator)

Mission		Metop	Org	janization	Instrument	Grou	ind segment		Applications		2
🗕 Requirements	-	Principle	— Design	— Sub system	s — Performan	69 2 —	🔲 Developmer	nt plan		115	

IPSF

Non conformity % peak to valley measurement

B1	B2	B3
3,7	3,8	3,7
6,8	10,0	10,0
4,6	2,3	3,8
2,6	3,0	4,4
	B1 3,7 6,8 4,6 2,6	B1B23,73,86,810,04,62,32,63,0

IPSF measurements close to predictions Alignment of the interferometer : $axis position < 200 \ \mu rad$ Cube corner offset : 32 \ \ m Specification : $\pm 5\%$

Spectral

• The Instrument Spectral Resolution Function which was measured during the optical vacuum test is similar to the predicted one.

ISRF definition

Spectral resolution

🖨 EUMETSAT

OUIT

Mission

Metop

Organization

Instrument

Ground segment

Applications

Gas Cell Measurements during TV test on Metop 2

Geometry

- Pixels geometrical characterisation
- Pixel diameter : compliant with the expected values
- with less than 0.1 mrd difference
- Angular distance (in mrd) between pixel radiometric
- centers (nominal value is 21.63 mrd)

	P1P2	P2P3	P3P4	P4P1
B1	21,65	21,61	21,67	21,61
B2	21,52	21,68	21,57	21,55
B3	21,55	21,66	21,57	21,57

• Effective pixel centres included within circles of less than 0.15 mrd in radius centered on the reference square corners (specification is 2 mrd)

Geometric performances well within the spec.

QUIT

Imager

- Radiometric performances
 - NEDT = 0.57 K (specified at 0.80 K).
 - Calibration accuracy < 1 K
 - Dynamic range : noise better than specification from 200 K to 300 K of scene temperature

- Geometrical performance
 - 4 blind pixels (2 % specified)

- FM3 OVT tests were carried out successfully at Alcaltel in October 2005
- FM3 showed the same behavior than FM2
- Radiometric performances are slightly better (specially in B1) and confirm the validity of the models.
- Calibration is as good as for the FM2
- Water contamination is weak and could lead to a loss of about 0.2%/day
- Instrument was accepted by the Technical Review board
- It is now stored at Alcalel for integration on a next MetOp platform

Metop

IASI FM3 on ground radiometric performances

Comparison IASI/AIRS

Metop

	AIRS on AQUA	IASI on MetOp
Overpass time	13:30	9:30 AM
Spectral coverage	2378 channels 650 to 2670 cm ⁻¹ with gaps (1136-1216, 1614-2170)	8461 channels 645 to 2760 cm ⁻¹ continuous
Radiometric performances	See plot	See plot
Spectral Performances	From 0.4 to 2.5 cm ⁻¹	From 0.32 to 0.46 cm ⁻¹
Geometry	3*3 pixels of 15*15 km ²	2*2 pixels of 12*12 km ²

Measurement NEDT is excellent and stable

AIRS NEDT at 250K measured for 240 granules on 2 June 2003

2187 of the 2378 AIRS channels have NEDT < 1K at 250K and gaussian noise characteristics

QUIT

EUMETSAT

ſ

CO and CH₄

CO column: 10-15%

Clerbaux et al 🚖 EUMETSAT QUIT

CH4 column: 3%

Camy Peyret et al

One day CO with IASI in cloud free conditions

Metop

(courtesy C. Clerbaux)

Conclusions

- The last on the ground tests show that
 - All performances meet their specifications (sounder and imager)
 - IASI proved an excellent behavior
 - The performance model is good and can be used in the analyses
- IASI will be an tremendous step forward in meteorology and atmospheric research

Infrared Atmospheric Sounding Interferometer

THANK YOU FOR YOUR ATTENTION

More information on http://smsc.cnes.fr/lasi